Functional derivatives, Schrödinger equations, and Feynman integration

نویسنده

  • Alexander Dynin
چکیده

Schrödinger equations in functional derivatives are solved via quantized Galerkin limit of antinormal functional Feynman integrals for Schrödinger equations in partial derivatives. Mathematics Subject Classification 2000: 81T08, 81T16; 26E15, 81Q05, 81S40.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional derivatives Schrödinger equations and Feynman integral

Cutoff Schrödinger equations in functional derivatives are solved via quantized Galerkin limit of antinormal functional Feynman integrals for Schrödinger equations in partial derivatives. Mathematics Subject Classification 2000: 81T08, 81T16; 26E15, 81Q05, 81S40.

متن کامل

Analytic Properties of Fractional Schrödinger Semigroups and Gibbs Measures for Symmetric Stable Processes

We establish a Feynman-Kac-type formula to define fractional Schrödinger operators for (fractional) Kato-class potentials as self-adjoint operators. In this functional integral representation symmetric α-stable processes appear instead of Brownian motion. We derive asymptotic decay estimates on the ground state for potentials growing at infinity. We prove intrinsic ultracontractivity of the Fey...

متن کامل

Functional Closure of Schwinger–Dyson Equationsin Quantum Electrodynamics1. Generation of Connected and One-Particle Irreducible Feynman Diagrams

Using functional derivatives with respect to free propagators and interactions we derive a closed set of Schwinger–Dyson equations in quantum electrodynamics. Its conversion to graphical recursion relations allows us to systematically generate all connected and one-particle irreducible Feynman diagrams for the n-point functions and the vacuum energy together with their correct weights. C © 2002...

متن کامل

Renormalization of QED in an external field

The Schwinger equations of QED are rewritten in three different ways as integral equations involving functional derivatives, which are called weak field, strong field, and SCF quantum electrodynamics. The perturbative solutions of these equations are given in terms of appropriate Feynman diagrams. The Green function that is used as an electron propagator in each case is discussed in detail. The...

متن کامل

Recursive Graphical Solution of Closed Schwinger-Dyson Equations in φ-Theory – Part1: Generation of Connected and One-Particle Irreducible Feynman Diagrams

Recently, it has been shown that the Schwinger-Dyson equations of QED can be closed in a certain functionalanalytic sense [8]. Using functional derivatives with respect to the free propagators and the interaction [8–14] two closed sets of equations were derived. The first one involves the connected electron and two-point function as well as the connected three-point function, whereas the second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008